Resonance Interactions in Acyclic Systems. 2. Y-Conjugated Anions and Cations

Kenneth B. Wiberg
Contribution from the Department of Chemistry, Yale University, New Haven, Connecticut 06511 Received August 28, 1989

Abstract

The first and second ionization energies of isobutene, acetone, acetic acid, and carbonic acid were calculated at the MP3/6-311++G**//6-31G* level giving values that agreed with the available experimental data. The first ionization energy decreased by $21 \mathrm{kcal} / \mathrm{mol}$ for each of the first two replacements of CH_{2} by O but decreased by only $10 \mathrm{kcal} / \mathrm{mol}$ for the third replacement. The second ionization energy was high and was the same for the first three compounds. It decreased for the third replacement of CH_{2} by O . It was concluded that the electronegativity of the terminal atoms determines the ionization energies, and that there was no evidence for Y aromaticity in the gas phase. In solution, the anions formed ion pairs or triplets with lithium, and this markedly reduced the energies of formation. The energies of reaction of isobutene with lithium hydride were calculated, and both the first and second reactions were found to be exothermic. The cations formed by the loss of one or two hydride ions from isobutene, and by the addition of a proton to guanidine, also were studied. The allyl cations had significant resonance stabilization, but no special stabilization was found for the dication. Guanidinium ion was found to have little if any resonance stabilization. The origin of the basicity of guanidine is discussed.

One of the remarkable observations in carbanion chemistry is the facile reaction of butyllithium with the monoanion derived from isobutene to give the dianion. ${ }^{1}$ This and related observations have received considerable attention and have been attributed either to "Y-aromaticity" 2.3 or to internal coulombic stabilization resulting from charge alternation. ${ }^{4}$ Both viewpoints have recently been reviewed. ${ }^{3.4}$

In our study of the formation of allyl anions from their neutral precursors, we found it useful to examine the effect on the ionization energy of replacing the terminal carbons by NH or $\mathrm{O} .^{5}$ Here, it was found that the replacement of one CH_{2} by NH reduced the ionization energy by $12 \mathrm{kcal} / \mathrm{mol}$, and replacement of one CH_{2} by O reduced the ionization energy by $23 \mathrm{kcal} / \mathrm{mol}$. Further, the effects were additive.

We have now examined the replacement of carbons in isobutene and the allyl anions ${ }^{6}$ derived from it by oxygen. In each case, the geometry was optimized with use of the $6-31 G^{*}$ basis set, ${ }^{7}$ and then the MP3/6-311++G** energy was obtained at that geometry. This flexible basis set, which is effectively triple- ζ and includes both diffuse and polarization functions at all atoms, was found to give ionization energies in good accord with the experimental data for the allyl anions. ${ }^{5}$ The energies are given in Table 1, and the structural parameters are given in Table II. In the case of methallyl anion, two rotamers of the methyl group were examined (1a and 1b) and were found to have essentially the same energy.

The ionization energies, which may be obtained from the data in Table I, are summarized in Table III. There was a considerable change in calculated ionization energies on going from 6-31G* to $6-311++G^{* *}$ showing the necessity of using a flexible basis set in studying these reactions. The MP2 correction for electron correlation overcorrected as is often found to be the case. ${ }^{8}$ The

[^0]MP3 values were close to RHF, and in the earlier related study, the MP4 correction had only a small effect. ${ }^{5}$ It was not calculated in the present case because of the size of some of the systems being studied. In order to compare the calculated values with experimental data, ${ }^{9}$ it was necessary to correct them for the loss of zero-point energy on ionization, corresponding to the loss of one $\mathrm{X}-\mathrm{H}$ stretching mode and two $\mathrm{X}-\mathrm{H}$ bending modes, where X is C or O . The zero-point energy changes were assumed to be the same as for the closely related systems we studied previously, ${ }^{5}$ leading to the calculated ΔH values in the table. They are in quite good agreement with experiment.

It is easier to visualize the results by an examination of Figure 1, which shows the ionization energies as a function of the number of oxygens. It can be seen that the first ionization energy changed by $21 \mathrm{kcal} / \mathrm{mol}$ for each of the first two replacements of C by O , but that the third replacement decreased the energy by only 10 $\mathrm{kcal} / \mathrm{mol}$. In the second ionization step, the first two replacements of C by O had no effect on the ionization energy, but the third replacement decreased the energy by $16 \mathrm{kcal} / \mathrm{mol}$.

These energy changes may readily be understood by examining the ions that are formed. The first ionization step gives the following ions:

Here, the first three ions are related by replacing a carbon in an allyl anion by oxygen, and as noted previously, the electronegativity of oxygen results in a reduced relative energy. However, with the last ion, the only effect is derived from the replacement of a nonreacting CH_{3} by a nonreacting OH . It is not surprising that this gives a smaller effect on the ionization energy.

The ions formed in the second ionization step are

2

4

6

8

The first three ions are formed by removing a proton from a methyl group, and the energy change is independent of the rest of the

[^1]Table I. Energies of Anions Formed by Proton Loss, H

compd	6.31G*	$6-311++\mathrm{G}^{* *}(6 \mathrm{D})$		
	RHF	RHF	MP2	MP3
isobutene	-156.11067	-156.15337	-156.75250	-156.79463
methallyl anion 1a ${ }^{\text {a }}$	-155.43085	-155.50010	-156.11452	-156.14776
methallyl anion $\mathbf{1 b}^{\text {b }}$	-155.43078	-155.50003	-156.11430	-156.14755
trimethylenemethyl dianion 2	-154.54723	-154.67236	-155.30020	-155.32382
	-191.96223	-192.01751	-192.66224	-192.68670
enolate anion 6	-191.32303	-191.39783	-192.05658	-192.07216
enolate dianion 4	-190.44506	-190.57334	-191.24498	-191.25117
acetic acid	-227.81065	-227.88384	-228.57685	-228.57400
acetate anion 5	-227.22506	-227.30007	-228.01106	-228.009 19
acetate dianion 6	-226.34994	-226.48224	-227.19816	-227.18689
carbonic acid	-263.64748	-263.738 38	-264.477 77	-264.46974
bicarbonate anion 7	-263.07861	-263.17901	-263.92762	-263.91084
carbonate dianion 8	-262.25060	-262.38569	-263.143 42	-263.11618

${ }^{a}$ One methyl hydrogen perpendicular to the plane of the carbon atoms. ${ }^{b}$ One methyl hydrogen in the plane of the carbon atoms.

Table II. Calculated Structures, $6-31 G^{* a}$

compd	unit	value
isobutene	$r(\mathrm{C}=\mathrm{C})$	1.321
	$r(\mathrm{C}-\mathrm{C})$	1.508
	$\angle \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	122.3
methallyl anion 1a	$r\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$	1.530
	$r\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$	1.384
	$\angle \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	115.1
methallyl anion 1b	$r\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$	1.529
	$r\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$	1.385
	$r\left(\mathrm{C}_{2}-\mathrm{C}_{4}\right)$	1.382
	$\angle \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	114.9
	$\angle \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{4}$	115.2
methallyl dianion 2	$r(\mathrm{C}-\mathrm{C})$	1.431
	$\angle \mathrm{CCC}$	120.0
acetone	$r(\mathrm{C}=\mathrm{O})$	1.192
	$r(\mathrm{C}-\mathrm{C})$	1.513
	$\angle O C C$	121.7
etnolate anion 3	$r(\mathrm{C}-\mathrm{O})$	1.252
	$r\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$	1.371
	$r\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)$	1.552
	$\mathrm{LOC}_{3} \mathrm{C}_{2}$	128.7
	$L^{(O C} C_{3}$	115.5
enolate dianion 4	$r(\mathrm{C}-\mathrm{O})$	1.291
	$r(\mathrm{C}-\mathrm{C})$	1.433
	$\angle O C C$	119.6
acetic acid	$r(\mathrm{C}=\mathrm{O})$	1.187
	$r(\mathrm{C}-\mathrm{O})$	1.332
	$r(\mathrm{C}-\mathrm{C})$	1.502
	$\angle O C C$	125.8
	$\angle O C O$	122.4
acetate anion 5	$r(\mathrm{C}-\mathrm{C})$	1.554
	$r\left(\mathrm{C}-\mathrm{O}_{1}\right)$	1.233
	$r\left(\mathrm{C}-\mathrm{O}_{2}\right)$	1.235
	$\angle \mathrm{CCO}_{1}$	116.0
	$\angle \mathrm{CCO}_{2}$	114.5
acetate dianion 6	$r(\mathrm{C}-\mathrm{O})$	1.283
	$r(\mathrm{C}-\mathrm{C})$	1.437
	$\angle \mathrm{C}-\mathrm{C}-\mathrm{O}$	121.4
carbonic acid	$r(\mathrm{C}=\mathrm{C})$	1.188
	$r(\mathrm{C}-\mathrm{O})$	1.315
	$\angle \mathrm{O}=\mathrm{CO}$	125.1
bicarbonate 7	$r\left(\mathrm{C}-\mathrm{O}_{1}\right)$	1.224
	$r\left(\mathrm{C}-\mathrm{O}_{2}\right)$	1.219
	$r\left(\mathrm{C}-\mathrm{O}_{3}\right)$	1.401
	$\angle \mathrm{O}_{1} \mathrm{CO}_{2}$	132.0
	$\angle \mathrm{O}_{1} \mathrm{CO}_{3}$	113.5
carbonate 8	$r(\mathrm{C}-\mathrm{O})$	1.285
	$\angle O C O$	120.0

${ }^{a}$ The lengths are given in \AA and the angles in deg. The numbering of the atoms is shown in Table V .
molecule. However, in the formation of carbonate ion, the proton is removed from oxygen, and consequently the ionization energy is reduced.

It can be seen that the energy changes are determined solely by the electronegativity of the groups at the terminal positions,

Figure 1. Lonization energies as a function of the number of terminal oxygens. The lower line is for the first ionization step, and the upper line is for the second step.
and there is no need to postulate resonance stabilization. This is in good accord with conclusions that have been reached for allyl anions. ${ }^{5}$ For example, with carboxylic acids, the ionization process might best be written as ${ }^{10}$

This would be in accord with the very small change in electron population at the oxygens as a result of ionization and the strong polarization of carbonyl groups. As might be expected the second ionization energies were considerably larger than the first, as has been observed in solution with carbonic acid (first $\mathrm{p} K_{\mathrm{a}}=3.7$, second $\mathrm{p} K_{\mathrm{a}}=10.3$). ${ }^{11}$

In view of these results, how does one rationalize the experimental observation of the ease of forming the dianion from isobutene? Theoretical studies by Streitwieser et al. ${ }^{12}$ and by Schleyer

[^2]Table III. Energy Changes on lonization ($\mathrm{kcal} / \mathrm{mol}$)

reaction	6-31G*	$6-311++\mathrm{G}^{* *}(6 \mathrm{D})$			ΔH	
	RHF	RHF	MP2	MP2	est ${ }^{\text {a }}$	obs
isobutene \rightarrow anion	426.6	409.9	400.3	405.9	395	397 ± 3
anion \rightarrow dianion	554.5	519.4	511.0	517.0		
acetone \rightarrow anion	401.1	388.8	380.1	385.6	375	369 ± 3
anion \rightarrow dianion	550.9	517.4	509.3	515.2		
acetic acid \rightarrow anion	367.5	361.3	355.0	360.7	352	349 ± 3
anion \rightarrow dianion	549.1	518.2	510.1	516.0		
carbonic \rightarrow bicarbonate	357.0	351.0	345.2	350.7	342	
bicarbonate \rightarrow carbonate	519.6	497.8	492.1	498.6		

${ }^{a}$ Derived from the MP3/6-311++G** energies by correction for zero-point energy differences ($11 \mathrm{kcal} / \mathrm{mol}$ for cleavage of a CH bond and 9 $\mathrm{kcal} / \mathrm{mol}$ for the cleavage of an OH bond).

Table IV. Energies of Lithio Derivatives
(a) Total Energies, H

compd	6-31G*	$6.311 \mathrm{G}^{* *}(6 \mathrm{D})$		
	RHF	RHF	MP2	MP3
isobutene	-156.11067	-156.15183	-156.74940	-156.79174
2-methylallyllithium	-162.955 22	-162.99928	-163.61094	-163.64625
dilithioisobutene	-169.80211	-169.848 32	-170.47380	-170.50267
lithium hydride	-7.98087	-7.98586	-8.00871	-8.01422
hydrogen	-1.12683	-1.13152	-1.15915	-1.16501

(b) Energy Changes, kcal/mol

reaction	$6.31 \mathrm{G}^{*}$	6-311 ${ }^{* *}$		
	RHF	RHF	MP2	MP3
isobutene $+\mathrm{LiH} \rightarrow 2$-methylallyllithium $+\mathrm{H}_{2}$	+6.0	+4.3	-7.5	-3.3
2-methylallyllithium $+\mathrm{LiH} \rightarrow$ dilithio $+\mathrm{H}_{2}$	+6.8	+3.3	-8.3	-4.5

et al. ${ }^{13}$ have shown that dilithiopropene and related compounds adopt bridged structures that maximize coulombic attraction between the lithium cations and the anion. It appeared likely that the same would be true with dilithioisobutene. The geometries of the monolithio and dilithio derivatives of isobutene were optimized with use of the $6-31 \mathrm{G}^{*}$ basis set, and the energies were calculated at the MP3/6-311G** level. The structures are shown in Figure 2, and the energies are given in Table IV. They were shown to be true minima by calculating the vibrational frequencies at the $6-31 \mathrm{G}^{*}$ level. No imaginary frequencies were found. The lowest calculated frequencies were $132 \mathrm{~cm}^{-1}$ for the monolithio compound and $159 \mathrm{~cm}^{-1}$ for the dilithio compound.

The energy changes for the following reactions were calculated with these data:

$$
\begin{aligned}
& \left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{LiH} \rightarrow \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{Li}^{+}+\mathrm{H}_{2} \\
& \mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}{ }^{-} \mathrm{Li}^{+}+\mathrm{LiH} \rightarrow \mathrm{C}\left(\mathrm{CH}_{2}\right)_{3}{ }^{2-} 2 \mathrm{Li}^{+}+\mathrm{H}_{2}
\end{aligned}
$$

The calculated energy changes were significantly affected by the correction for electron correlation, and with the MP3/6-311G** energies, the first reaction was calculated to have $\Delta E=-3.3$ $\mathrm{kcal} / \mathrm{mol}$ and the second to have $\Delta E=-4.5 \mathrm{kcal} / \mathrm{mol}$. The two energy changes were exothermic and were now very close. This accounts for the observed ease of formation of the dilithio compound. The structures (Figure 2) were those that will maximize the coulombic attraction of the lithium cation(s) for the anions. It seems clear that the formation of the dilithio compounds has little if anything to do with " Y -aromaticity".

Charge Distribution. On the basis of the charge distribution derived from the Mulliken population analysis, it has been suggested that the isobutene dianion is stabilized by an attractive coulombic interaction between the central carbon with a positive charge and the terminal carbons bearing a negative charge. ${ }^{4}$ However, Both Mulliken ${ }^{14}$ and others ${ }^{15}$ have noted the deficiency

[^3]

Figure 2. Structures of lithio derivatives of isobutene: (a) the monolithio derivative; (b) the dilithio derivative. The lithiums are shown shaded.
in the population analysis which uses an arbitrary division of charge density between atoms and is basis set dependent.

This is well illustrated by the central carbon atom of isobutene. The use of the $6-31 \mathrm{G}^{*}$ basis set led to a Mulliken population of 5.892 e , corresponding to a charge of +0.108 . With the larger basis set, the population decreased to 4.989 e , corresponding to

[^4]

Figure 3. Atomic charges and energies derived via numerical integration for the anions and their parents. The first value (T) is the total charge, the second (π) is the charge for the π system, and the third is the kinetic energy. which is minus the total energy for the group or atom. In the case of methallyl anion, conformer 1 lb is shown.
a charge of $1.011!$ Neither charge is reasonable. An sp^{2} hybridized carbon is more electronegative than an sp^{3} hybridized carbon, and so there should be a drift of charge density from the methyl group to the central carbon, and it should have a small negative charge.

A more satisfactory procedure makes use of Bader's theory of atoms in molecules. ${ }^{16}$ Here, zero-flux surfaces are located which separate pairs of bonded atoms. The collection of these surfaces will serve to separate a molecule into a set of atomic domains. Integration of the charge density within one of these domains gives the electron population for the given atom, and similarly, integration of the kinetic energy gives the atomic kinetic energy (T_{Ω}) that is directly related to the total energy of the atoms $\left(E_{\Omega}=-T_{\Omega}\right)$.

The results of this analysis for the anions are given in Table V. As expected, the electron population at the central carbon of isobutene was 6.050 e , corresponding to a charge of -0.050 . The total population for the methyl group was 8.963 e , leading to a small positive charge, +0.037 . The group charges for the anions and their parents are summarized in Figure 3.

The monoanion of isobutene again had a small negative charge at the central carbon, and most of the negative charge was at the methylene groups (av-0.422). However, some of the negative charge appeared at the methyl group (-0.113). Finally, with the dianion, the central carbon had only a small positive charge $(+0.040)$ and the methylene groups bore essentially $2 / 3$ of a negative charge each (-0.679). These results do not support the idea of internal coulombic stabilization. It is interesting to note that the hydrogens bore a considerable part of the negative charge in the anions. This is in accord with simple electrostatic concepts, in which an ion will try to put the charge on as large a volume element as possible in order to reduce the electrostatic energy.

In the case of acetone, the carbonyl group was strongly polarized $\mathrm{C}^{+}-\mathrm{O}^{-}$as is usually found with this group. ${ }^{17}$ The charge resulted from two factors, both related to the difference in electronegativity between carbon and oxygen. The more electronegative oxygen

[^5]will cause some shift in charge density from the carbon to the oxygen. This will, in turn, cause the bond critical point to move toward the carbon. The zero-flux surfaces pass through the critical point, and as a result the "size" of the oxygen in the direction of the carbon increases. The combination of the charge shift and the increased size leads to the relatively large charges assigned to carbon and oxygen.
Turning to the anions derived from acetone (Figure 3), it can be seen that the charge at the terminal carbon was not much different than that found for the isobutene derived ions. However, it was adjacent to a more electron deficient carbon, resulting in greater internal coulombic stabilization. The deprotonation of acetate ion again led to charges in the terminal carbon that were similar to those for the dianions derived from isobutene and acetone, and the increased stabilization of acetate was in part a result of the greater electron deficiency at the central carbon. It can be seen that the internal coulombic stabilization originally proposed for the isobutene dianion is actually found in the anions derived from acetone and acetic acid.

The π-electron populations for each of the atomic regions also are given in Table V and Figure 3. Some polarization of the π-charge is seen with the trimethylenemethyl dianion where the central carbon has a small positive π-charge. It should be noted that whereas the full atomic charges are well defined as the atomic number less the calculated electron population, the π-charges are formal charges based on "normal" populations of 2 for each CH_{3} or OH group and 1 for each atom involved with a double bond. The large change in π-charge for the hydroxyl oxygen in the ionization of acetic acid resulted from this definition. It can be seen from Table V that the π-populations at the two oxygens were about the same in acetic acid and in acetate ion.

Energies of Monocation and Dications. In our previous study of allyl cations and anions, the resonance stabilization of the cations was found to be much more important than that for the anions. ${ }^{5}$ The difference had a simple origin. In allyl cation, the π-electrons may be distributed one per $\mathrm{C}-\mathrm{C}$ bond, minimizing electron repulsion. In the anion, however, the additional two electrons will result in an increase in electron repulsion that will markedly reduce the delocalization energy.

The energies of the cations derived by removing one ${ }^{18}$ or two hydride ions from isobutene are given in Table VI. For comparison, the energies of guanidine, the guanidinium ion, ${ }^{19}$ and some related compounds were calculated, and these data also are included in the table. In our previous study, the rotational barrier for allyl cation was $34.4 \mathrm{kcal} / \mathrm{mol}$ at the MP3/6-311++G**// 6-31G* level. The barrier for methallyl cation was about the same $(33.3 \mathrm{kcal} / \mathrm{mol})$. We have proposed that these barriers for the allyl cations are composed of about half from loss of resonance stabilization and half from the increase in electrostatic energy as the volume associated with the charge is decreased. ${ }^{5}$

The energy of forming the dication was, as expected, quite high. Of more direct interest, the calculated rotational barrier was found to be only $20 \mathrm{kcal} / \mathrm{mol}$, considerably smaller than that for the monocation. A large part of this barrier must be attributed to the increase in electrostatic energy caused by the localization of charge in the rotated ion. ${ }^{5}$ This suggests that the dication does not have much additional stabilization despite its "Y-conjugation". Rotation of one methylene group would still leave an allyl system, and so there should not be much loss of resonance stabilization.

The electron populations for the monocations and dications are given in Table VII, and the charges derived from the populations are summarized in Figure 4. In methallyl cation, a considerable part of the positive charge was borne by the methyl group, but

[^6]Table V．Electron Populations for Anions and Their Parents， $6-311++\mathrm{G}^{* *}$

compd	atom	n_{π}	n_{T}	T^{a}	compd	atom	n_{π}	n_{T}	T^{a}
isobutene	C_{1}	1.0006	5.9700	37.7712	enolate dianion 4	0	1.8802	9.4743	75.3970
	H	0.0360	1.0263	0.6311		C_{3}	0.6618	5.0642	37.1732
	C_{2}	0.9356	6.0500	37.8638	11.	C_{2}	1.5326	6.3937	37.6879
	C_{3}	0.9130	5.8525	37.7176		Ha	0.1002	1.1589	0.6514
	Ha	0.0274	1.0345	0.6377	il．＇11］	Hb	0.0964	1.1793	0.6622
	Hb	0.5276	1.0382	0.6363		sum	6.0004	32.0023	190.5732
	sum	5.9994	31.9994	156.1530					（190．5733）
				（156．1534）	acetic acid	$\mathrm{C}(\mathrm{Me})$	0.9316	5.8490	37.7398
methallyl anion 1a	C_{1}	0.8356	5.8617	37.7071		Ha	0.0244	0.9844	0.6167
	Ha	0.5856	1.0833	0.6511	110	Hb	0.4998	0.9891	0.6142
	Hb	0.2256	1.0848	0.6555		C	0.4202	4.1914	36.6610
	C_{2}	0.9442	6.0447	37.8329		$=0$	1.6876	9.3458	75.6867
	C_{3}	1.4082	6.1750	37.6869		O	1.9274	9.2982	75.6225
	Hc	0.1086	1.1284	0.6578		H	0.0094	0.3528	0.3284
	Hd	0.0750	1.1183	0.6537		sum	6.0002	31.9998	227.8835
	sum	6.0004	32.0029	155.4989					（227．8838）
				（155．5001）	acetate anion 5	$\mathrm{C}(\mathrm{Me})$	0.8828	5.9076	37.7425
methallyl anion 1b	C_{1}	0.8954	5.8608	37.7077		Ha	0.0292	1.0785	0.6514
	Ha	0.0354	1.0874	0.6570	－	Hb	0.5400	1.0778	0.6473
	Hb	0.5502	1.0824	0.6525	114	C	0.4118	3.9640	36.4920
	C_{2}	0.9166	6.0421	37.8346		O_{1}	1.7926	9.4462	75.5581
	C_{3}	1.3908	6.1805	37.6839		O_{2}	1.8042	9.4511	75.5697
	Ha	0.0798	1.1301	0.6579		sum	6.0006	32.0030	227.3083
	Hb	0.0722	1.1185	0.6530					（227．3081）
	C_{4}	1.3602	6.1695	37.6893	acetate dianion 6	C_{1}	1.5526	6.4235	37.6847
	Ha	0.0800	1.1263	0.6582		H	0.1008	1.1744	0.6566
	Hb	0.0686	1.1177	0.6542 155.5008		C_{2}	0.4952	4.2195	36.6247
	sum	5.9994	31.9977	$\begin{gathered} 155.5008 \\ (155.5000) \end{gathered}$	いて	0	1.8750	9.5032	74.4295
trimethylenemethyl dianion 2	C_{1}	0.8422	5.9605	$\begin{gathered} (155.5000) \\ 37.7313 \end{gathered}$		sum	5.9994	31.9982	226.4816
	C_{2}	1.5228	6.3438	37.6617	carbonic acid	C	0.3628	3.3703	36.1036
	H	0.0982	1.1675	0.6593		$=0$	1.7498	9.3716	75.7021
	sum	5.9998	31.9969	$\begin{gathered} 154.6722 \\ (154.6724) \end{gathered}$		O	1.9344	9.2906	75.6453
acetone	0	1.6036	9.2966	（154．6724）		H	0.0092	0.3386	0.3213
	0	1.6036	9.2966	75.6459		sum	5.9998	32.0003	$\begin{gathered} 263.7389 \\ (263.7384) \end{gathered}$
	C_{2}	0.4666	4.8469	37.1023 37.7666					
＂${ }^{\text {coser }}$	C_{3}	0.9144	5.9017	37.7666	bicarbonate anion 7	C	0.3744	3.4112	36.1209
10 年	Ha Hb	0.0240 0.5132	0.9899 1.0181	0.6176 0.6251		$\mathrm{O}_{1}$$\mathrm{O}_{2}$$\mathrm{O}_{3}$Hsum		9.4591	75.5870
	sum	5.9998	31.9991	0.6251 192.0170			1.8172	9.4394	75.6007
				（192．0175）			0.0130	0.4021	75.5091
enolate anion 3	0	1.8198	9.4344	75.4968			6.0008	32.0003	$\begin{gathered} 263.1796 \\ (263.1790) \end{gathered}$
	C_{2}	1.3576	6.1713	37.7230					
11.	Ha	0.0666	1.1003	0.6451	carbonate dianion 8	C	0.3552	3.4229	36.1002
110	Hb	0.0706	1.1304	0.6605		$\begin{array}{r} \mathrm{O} \\ \text { sum } \end{array}$	$\begin{aligned} & 1.8810 \\ & 5.9982 \end{aligned}$	$\begin{array}{r} 9.5231 \\ 31.9922 \end{array}$	$\begin{array}{r} 75.4286 \\ 262.3860 \\ (262.3857) \end{array}$
	C_{3}	0.6774	5.0152	37.1855					
	C_{4}	0.8808 0.0290	5.9059 1.0616	37.7370 0.6449					
	Ha	0.0290	1.0616	0.6449					
	Hb	0.5496	1.0887	0.6526					
	sum	6.0008	31.9965	$\begin{gathered} 191.3980 \\ (191.3978) \end{gathered}$					

${ }^{a}$ The electron populations are given for the π－system（ n_{π} ）and for all the electrons（ n_{T} ）．The kinetic energies（ T ）were corrected for the virial defect found in the RHF calculations and sum to a value close to the negative of the total energy（ E ）．The values of $-E$ are given in parentheses．
its π－charge was small．The central carbon also bore part of the positive charge，but again its π－charge was small．The same was true of the dication．

The protonation of guanidine to form guanidinium ion may be examined in the same fashion．In order to have another system for comparison，the energies of propanimine（9）and propan－ iminium ion（10）also were calculated．The protonation of guanidine was calculated to be only $10 \mathrm{kcal} / \mathrm{mol}$ more exothermic than that of propanimine．If guanidinium ion were strongly resonance stabilized，one might reasonably expect a considerably larger difference in energy．Some differences should be expected since guanidinium ion would have its charge spread over three equivalent groups，leading to a lower electrostatic energy than for propaniminium ion．Another indication of the low resonance stabilization of guanidinium ion was the small rotational barrier， $14 \mathrm{kcal} / \mathrm{mol}$ ，which was in good agreement with previous calcu－ lations and experimental observations．${ }^{19}$ Most of the barrier probably resulted from the decrease in the volume over which the charge is distributed when one NH_{2} group was rotated．${ }^{5}$

Figure 4．Atomic charges and energies derived via numerical integration for the cations and their parents．

The charge distributions for guanidine and guanidinium ion （Table VII and Figure 4）show that the nitrogens do not change

Table VI. Formation of Cations

compd	6.31G*	$6.311++\mathrm{G}^{* *}(6 \mathrm{D})$		
	RHF	RHF	MP2	MP3
(a) Energies of Cations and Related Compounds, H				
isobutene	-156.11067	-156.153 37	-156.75250	-156.79463
methallyl cation	-155.23517	-155.27353	-155.82468	-155.86361
methallyl dication	-154.13875	-154.17476	-154.65580	-154.69681
methallyl cation, rot. 90°	-155.18372	155.22343	-155.76904	-155.81054
methallyl dication, rot. 90°	-154.10189	-154.13847	-154.62370	-154.664 67
guanidine	-204.11994	-204.19418	-204.87989	-204.895 91
guanidinium ion	-204.52152	-204.593 08	-205.26229	-205.28405
guanidinium ion, rot. 90°	-204.49699	-204.568 84	-205.24110	-205.26260
propanimine	-172.11599	-172.16616	-172.79448	-172.82821
propaniminium ion	-172.49752	-172.548 12	-173.16184	-173.20080
H^{-}	-0.422 44	-0.48696	-0.50565	-0.51070
(b) Energies of lonization, $\mathrm{kcal} / \mathrm{mol}$				
isobutene \rightarrow methallyl cation	284.3	246.5	264.9	263.8
methallyl ${ }^{+} \rightarrow$ methallyl dication	422.9	383.9	416.2	414.9
guanidine $+\mathrm{H}^{+} \rightarrow$ guanidinium cation	252.0	250.3	240.0	243.6
propanimine $+\mathrm{H}^{+} \rightarrow$ ion	239.4	239.7	230.5	233.8
(c) Rotational Barriers, $\mathrm{kcal} / \mathrm{mol}$				
methallyl cation	32.3	31.4	34.9	33.3
methallyl dication	23.1	22.8	20.1	20.2
guanidinium ion	14.1	15.2	13.3	13.5

Table VII. Atom Properties of Cations, 6-311++G**

compd	atom	n_{π}	n_{T}	T^{a}
methallyl cation	C_{1}	0.9590	5.8387	37.7066
	Ha	0.6296	0.9623	0.6059
	Hb	0.1910	0.9747	0.6128
	C_{2}	0.9522	5.8236	37.7447
	C_{3}	0.5152	5.9951	37.8645
	Ha	0.0106	0.8515	0.5615
	Hb	0.0134	0.8669	0.5695
	sum	4.0012	30.0010	$\begin{gathered} 155.2738 \\ (-155.2735) \end{gathered}$
methallyl dication	C_{1}	0.2940	5.9066	37.8009
"	H	0.0042	0.7471	0.5114
11	C_{2}	1.0922	5.7952	37.7047
$11{ }_{11}{ }^{\text {c-11 }}$	sum	1.9994	27.9976	$\begin{gathered} 154.1758 \\ (154.1748) \end{gathered}$
guanidine	C	0.4996	3.9681	36.6166
	N_{1}	1.7924	8.4047	55.1017
	H	0.0548	0.6607	0.4928
	N_{2}	1.6958	8.3027	55.0697
	Ha	0.0332	0.5986	0.4637
	Hb	0.0470	0.5923	0.4595
	N_{3}	1.7930	8.2937	55.0724
	Ha	0.0390	0.5771	0.4524
	Hb	0.0454	0.6033	0.4650
	sum	6.0002	32.0012	$\begin{gathered} 204.1938 \\ (-204 \end{gathered}$
	C	0.4286	3.7834	$\begin{gathered} (-204.1942) \\ 36.4879 \end{gathered}$
guanidinium ion	N	1.8224	8.3860	55.2061
	H	0.0168	0.5091	0.4148
	sum	5.9966	31.9960	204.5950
				(-204.5931)

${ }^{a} T$ is the kinetic energy. Next to each sum is given the total energy obtained in the RHF calculation.
much in going to the ion, and in fact they were calculated on average to have a larger negative charge in the cation than in the parent. Most of the positive charge in the ion was borne by the hydrogens, resulting in having the charge spread over as large a volume as possible so as to reduce the electrostatic energy. As noted above, the change in the π-charges on going from guanidine to its ion was a result of the definition of "normal" π-charges. The nitrogens in both species have about the same π-electron populations.

Guanidine is considered to be an unusually strong base ($\mathrm{p} K_{\mathrm{a}}$ 13.6), roughly comparable to hydroxide ion, and the origin of its basicity is commonly ascribed to resonance stabilization of the
guanidinium ion. ${ }^{2}$ If this resonance stabilization is not important, what is the origin of the basicity of guanidine? First, it must be recognized that hydroxyl ion in water is actually a relatively weak base. In the gas phase, hydroxyl ion will abstract a proton from toluene, ${ }^{20}$ but no such reaction occurs in solution. The low basicity of aqueous hydroxide ion results from strong hydrogen bonding to water, stabilizing the ion. Protonation leads to the loss of the stabilization due to hydrogen bonding, and as a result the effective basicity is reduced. The basicity of guanidine probably has a similar origin. Here, it is the conjugate acid that is strongly hydrogen bonded to the solvent. As noted above, the nitrogens bear a negative charge, and the positive charge resides largely at the hydrogens that may be involved in hydrogen bonding. ${ }^{21}$

Conclusions

The most important conclusion that may be derived from this investigation is that 6π-electrons do not necessarily lead to π electron stabilization. Here we may contrast benzene with the $6-\pi$-electron "Y-conjugated" systems. In the former, the 6π electrons may be distributed over $6 \mathrm{C}-\mathrm{C}$ bonds, leading to reduced electron repulsion as compared to $\mathrm{C}-\mathrm{C}$ double bonds that have 2π-electrons distributed over one $\mathrm{C}-\mathrm{C}$ bond. ${ }^{22}$ The Y dianions and guanidinium ion have 6π-electrons distributed over three $\mathrm{C}-\mathrm{C}$ or other σ-bonds, or two per bond. Therefore, there is no opportunity to reduce π-electron repulsion, and little special stabilization is found.

Experimental

Calculations. The calculations were carried out using GAUSSIAN- 86^{23} with standard basis sets. The integration of the charge density and the kinetic energy was carried out with PROAIMS. ${ }^{24}$

Acknowledgment. This investigation was supported by the National Institutes of Health. The calculations made use of a Trace computer and a Microvax GPX workstation made available via grants from the National Institute of Health.

[^7]
[^0]: (1) Klein, J.; Brenner, S. J. Am. Chem. Soc. 1969, 91, 3094.
 (2) Gund, P. J. Chem. Educ. 1972, 49, 100.
 (3) Agranat, I.; Skanke, A. J. Am. Chem. Soc. 1985, 107, 867. Cf.: Inagaki, S.; Hirabayashi, Y. Chem. Lett. 1982, 709. Inagaki, S.; Kawata, H.; Hirabayashi, Y. J. Org. Chem. 1983, 48, 2928.
 (4) Klein, J. Tetrahedron 1983, 39, 2733; 1988, 44, 503.
 (5) Wiberg, K. B.; Breneman, C.; LePage, T. J. Am. Chem. Soc. In Press.
 (6) Theoretical studies of the trimethylenemethyl dianion at the 6-31G level have been reported in ref 3. The rotational barrier was found to be 19 $\mathrm{kcal} / \mathrm{mol}$, essentially the same as for allyl anion. The latter has been attributed largely to electrostatic destabilization of the more charge localized rotated form (ref 5).
 (7) 6-31G*: Hariharan, P. C.; Pople, J. A. Chem. Phys. Lett. 1972, I6, 217. 6-311G*: Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. 6-31+G*: Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comp. Chem. 1983, 4. 294.

[^1]: (8) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; pp 278ff.
 (9) Lias, S. G.; Bartmess, J. E.; Liebman, J. E.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Gas Phase Ion and Neutral Thermochemistry; American Institute of Physics: New York, 1988.

[^2]: (10) Siggel, M. R.; Thomas, T. D. J. Am. Chem. Soc. 1986, 108, 4360. Siggel, M. R.; Streitwieser, A., Jr.; Thomas, T. D. J. Am. Chem. Soc. 1988 , 110,8022 . Wiberg, K. B.; Laidig, K. E. J. Am. Chem. Soc. 1987, 109, 5935. (11) Cotton, F. A.; Wilkinson, G. Advanced Organic Chemistry, 5th ed.; Wiley: New York, 1988; p 245.

[^3]: (12) Streitwieser, A., Jr. Acc. Chem. Res. 1984, 17, 353. Kost, D.; Klein, J.; Streitwieser, A., Jr.; Schriver, G. W. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 3922.
 (13) Schleyer, P. v. R. Pure Appl. Chem. 1983, 55, 355. Schleyer, P. v R.; Kos, A. J.; Kaufman, E. J. Am. Chem. Soc. 1983, 105, 7617. Kos, A. J.; Stein, P.: Schleyer, P. v. R. J. Organomet. Chem. 1985, 280, C1.

[^4]: (14) Mulliken, R. S.; Politzer, P. J. Chem. Phys. 1971, 55, 5135.
 (15) Grier, D. L.; Streitwieser, A., Jr. J. Am. Chem. Soc. 1982, 104, 3556 and references therein.

[^5]: (16) Bader, R. F. W.; Nguyen-Dang, Adv. Quantum Chem. 1981, 14, 63. Bader, R. F. W.; Nguyen-Dang, T. T.; Tal, Y. Rep. Prog. Phys, 1981, 44, 893. Bader, R. F. W. J. Chem. Phys. 1986, 85, 3133. Bader, R. F. W. Acc. Chem. Res. 1985, 9, 18.
 (17) Slee, T.; Larouche, A.; Bader, R. W. F. J. Phys. Chem. 1988, 92, 6219.

[^6]: (18) For a previous theoretical study of the methallyl cation (STO-3G) see: Mayr, H.; Forner, W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1979, 101, 1032. For a previous theoretical study of the trimethylenemethyl dication (6-31G) see ref 3 .
 (19) For a previous theoretical study of the guanidinium ion see: Sapse, A. M.; Massa, L. J. J. Org. Chem. 1980, 45, 719. Herzig, L.; Massa, L. J.; Santoro, A.; Sapse, A. M. J. Org. Chem. 1981, 46, 2330. They found a rotational barrier $(6.31 \mathrm{G})$ of $14.7 \mathrm{kcal} / \mathrm{mol}$ and an experimental barrier of $13 \mathrm{kcal} / \mathrm{mol}$.

[^7]: (20) Bartmess, J. E.; Scott, J. A.; Mclver, R. T., Jr. J. Am. Chem. Soc. 1979, 101, 6046.
 (21) The importance of hydrogen bonding in stabilizing guanidinium ion has been recognized, ref 19 .
 (22) Dewar, M. J. S.; Schmeising, H. N. Tetrahedron 1959, 5, 166; 1960, 11, 96 .
 (23) Frisch, M. J.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.; Melius, C. F.; Martin, R. L.; Stewart, J. J. P.; Bobrowicz, F. W.; Rohlfing, C. M.; Kahn, L. R.; Defrees, D. J.; Seeger, R. A.; Whiteside, R. A.; Fox, D. J.; Fluder, E. M.; Pople, J. A. Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh, PA 1984.
 (24) Biegler-König, F. W.; Bader, R. F. W.; Tang, T.-H. J. Comput. Chem. 1982, 3, 317.

